Что_такое_вершина_треугольника

Что_такое_вершина_треугольника

Треугольник. Формулы и свойства треугольников.

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

Читайте также:  Много_ли_сахара_в_мандаринах

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

S = a · b · с
4R
S = p · r

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Что такое вершина треугольника

Определение вершины треугольника

Вершина треугольника — это точка, в которой соединяется две его стороны.

В треугольнике три вершины.

Вершины принято обозначать заглавными буквами греческого алфавита, например, $A$, $B$, $C$.

Задание. Какие из точек на рисунке 1 являются вершинами треугольника?

Ответ. Вершинами треугольника являются точки $A$, $B$, $K$.

Разделы

  • Формулы сокращенного умножения
  • Формулы по физике
  • Логарифмы
  • Векторы
  • Геометрические фигуры
    • Что такое треугольник
    • Что такое внешний угол треугольника
    • Что такое медиана треугольника
    • Что такое высота треугольника
    • Что такое биссектриса треугольника
    • Что такое вершина треугольника
    • Что такое прямоугольный треугольник
    • Что такое равносторонний треугольник
    • Что такое разносторонний треугольник
    • Что такое остроугольный треугольник
    • Что такое правильный треугольник
    • Что такое средняя линия треугольника
    • Что такое квадрат
    • Что такое ромб
    • Что такое круг
    • Что такое окружность
    • Что такое прямоугольник
    • Что такое параллелограмм
    • Что такое трапеция
  • Матрицы
  • Комплексные числа
  • Пределы
  • Производные
  • Интегралы
  • СЛАУ
  • Числа
  • Дроби

Краткая теория

Онлайн калькуляторы

Рассчитайте цену решения ваших задач

Калькулятор
стоимости

Решение контрольной
300-600 рублей —> от 300 рублей *

* Точная стоимость будет определена после загрузки задания для исполнителя

Читайте также:  Можно_ли_накачать_скулы_на_лице

Копирование материалов с сайта возможно только с разрешения администрации портала и при наличие активной ссылки на источник.

«Сегодня от своего лица хочу поблагодарить этот сайт за помощь мне с учебой. Здесь я пользовалась не только материалами, но и нашла преподавателей которые решали мне задачи.

Если тебе нужно что-то сделать в универе, я сама рекомендую. А также пользуйся моей ссылкой и получай 300 руб. на счёт при регистрации.»

Вершина треугольника

Определение вершины треугольника

В треугольнике есть три точки пересечения сторон, образующие три угла. Их называют вершинами, а стороны, на которые они опираются – сторонами треугольника.

Рис. 1. Вершина в треугольнике.

Вершины в треугольниках обозначают большими латинскими буквами. Поэтому чаще всего в математике стороны обозначают двумя заглавными латинскими буквами, по названию вершин, которые входят в стороны. Например стороной АВ называют сторону треугольника, соединяющую вершины А и В.

Рис. 2. Обозначение вершин в треугольнике.

Характеристики понятия

Если взять произвольно ориентированный в плоскости треугольник, то на практике очень удобно выразить его геометрические характеристики через координаты вершин этой фигуры. Так, вершину А треугольника можно выразить точкой с определенными числовыми параметрами А(х; y).

Зная координаты вершин треугольника можно найти точки пересечения медиан, длину высоты, опущенную на одну из сторон фигуры, и площадь треугольника.

Для этого используются свойства векторов, изображаемых в системе декартовой системе координат, ведь длина стороны треугольника определятся через длину вектора с точками, в которых находятся соответствующие вершины этой фигуры.

Использование вершины треугольника

При любой вершине треугольника можно найти угол, который будет смежным внутреннему углу рассматриваемой фигуры. Для этого придется продлить одну из сторон треугольника. Поскольку сторон при каждой вершин две, то и внешних углов при каждой вершине два. Внешний угол равен сумме двух внутренних углов треугольника, несмежных с ним.

Рис. 3. Свойство внешнего угла треугольника.

Если построить при одной вершине два внешних угла, то они будут равны, как вертикальные.

Что мы узнали?

Одним из важных понятий геометрии при рассмотрении различных типов треугольников является вершина. Это точка, где пересекаются две стороны угла данной геометрической фигуры. Ее обозначают одной из больших букв латинского алфавита. Вершину треугольника можно выразить через координаты x и y, это помогает определять длину стороны треугольника как длину вектора.

Читайте также:  Постоянно_хочется_зевнуть

Тест по теме

Оценка статьи

Средняя оценка: 4.2 . Всего получено оценок: 159.

Не понравилось? — Напиши в комментариях, чего не хватает.

Содержание

  1. Определение вершины треугольника
  2. Характеристики понятия
  3. Использование вершины треугольника
  4. Что мы узнали?

Бонус

  • Тест по теме
  • Площадь
  • Площадь прямоугольника
  • Единицы измерения площади (5 класс)
  • Виды треугольников
  • Объем прямоугольного параллелепипеда
  • Площадь поверхности прямоугольного параллелепипеда Вершина треугольника
  • Деление с остатком
  • Упрощение выражений
  • Степень числа
  • Формула площади прямоугольника через диагональ
  • Умножение и деление натуральных чисел
  • Сочетательное свойство умножения
  • Переместительное свойство умножения
  • Делимость
  • Делимость чисел
  • Совершенные числа

показать все

По многочисленным просьбам теперь можно: сохранять все свои результаты, получать баллы и участвовать в общем рейтинге.

  1. 1. Игорь Проскуренко 458
  2. 2. Борис Пугачёв 378
  3. 3. Слава Данченко 373
  4. 4. Тапани К 316
  5. 5. Катя Деева 308
  6. 6. Татьяна Галкина 251
  7. 7. марина берн 241
  8. 8. Марина Васильева 168
  9. 9. Алиса Голдаева 159
  10. 10. Владислав Царьков 155
  1. 1. Кристина Волосочева 19,120
  2. 2. Ekaterina 18,721
  3. 3. Юлия Бронникова 18,580
  4. 4. Darth Vader 17,856
  5. 5. Алина Сайбель 16,787
  6. 6. Мария Николаевна 15,775
  7. 7. Лариса Самодурова 15,735
  8. 8. Liza 15,165
  9. 9. TorkMen 14,876
  10. 10. Влад Лубенков 13,530

Самые активные участники недели:

  • 1. Виктория Нойманн — подарочная карта книжного магазина на 500 рублей.
  • 2. Bulat Sadykov — подарочная карта книжного магазина на 500 рублей.
  • 3. Дарья Волкова — подарочная карта книжного магазина на 500 рублей.

Три счастливчика, которые прошли хотя бы 1 тест:

  • 1. Наталья Старостина — подарочная карта книжного магазина на 500 рублей.
  • 2. Николай З — подарочная карта книжного магазина на 500 рублей.
  • 3. Давид Мельников — подарочная карта книжного магазина на 500 рублей.

Карты электронные(код), они будут отправлены в ближайшие дни сообщением Вконтакте или электронным письмом.

Ссылка на основную публикацию
Adblock detector