Функции_скелетных_и_гладких_мышц

Функции_скелетных_и_гладких_мышц

Функции гладких и скелетных мышц

Лекция 8. Физиология мышечного аппарата

1. Физиология мышц, классификация мышечных волокон.

2. Функции гладких и скелетных мышц.

3. Функциональная организация скелетных мышц.

4. Механизмы сокращения и расслабления мышечного волокна.

5. Сокращение мышц.

6. Структурные и физиологические основы мышечной силы.

8. Энергетика мышечного сокращения.

Физиология мышц, классификация мышечных волокон

В организме человека выделяют мышечные волокна 3-х видов:

1. поперечно-полосатые (скелетные) мышечные волокна;

2. гладкие мышечные волокна;

3. сердечная мышца (или миокард).

Скелетные мышцы прикрепляются своими сухожилиями к различным частям скелета и обеспечивают его движение (локомоции) в пространстве. Работа этих мышц осуществляется произвольно при участии коры головного мозга, т.е. контролируется сознанием. В теле человека насчитывается свыше 215 пар скелетных мышц. Скелетные волокна подразделяются на:

1. Фазные (они генерируют ПД):

a. быстрые волокна (белые, гликолитические);

b. медленные волокна (красные, окислительные волокна).

2. Тонические (не способны генерировать полноценный потенциал действия распространяющегося типа).

Гладкие мышцы входят в состав большинства внутренних органов; сокращаются непроизвольно, т.е. их работа не контролируется сознанием.

Гладкие мышцы делятся на:

1. Тонические — не способны развивать "быстрые" сокращения. и

2. Фазнотонические можно условно разделить на:

a. обладающие автоматией — способные к спонтанной генерации фазных сокращений,

b. не обладающие свойством автоматии.

Сердечная мышца составляет основную структуру сердца, имеет некоторые общие свойства со скелетной мышцей, но как и гладкая, не контролируется сознанием. Обладает свойством автоматии.

Физиологические свойства мышц:

1. Возбудимость, т. е. способностью возбуждаться при действии раздражителей.

2. Проводимость – способностью проводить возбуждение.

3. Сократимость – способностью изменять свою длину или напряжение при возбуждении.

4. Растяжимость – способностью изменять свою длину под действием растягивающей силы.

5. Эластичность – способностью восстанавливать свою первоначальную длину после прекращения растяжения.

Функции гладких и скелетных мышц

Скелетные мышцы составляют 40% от массы тела и выполняют ряд важных функций:

1 — передвижение тела в пространстве,

2 — перемещение частей тела относительно друг друга,

3 — поддержание позы,

4 — передвижение крови и лимфы,

5 — выработка тепла,

6 — участие в акте вдоха и выдоха,

7 — двигательная активность как важнейший антиэнтропийный и антистрессовый фактор (тезисы "движение — это жизнь" или "кто много двигается, тот много живет" — имеют реальную материальную основу),

8 — депонирование воды и солен,

9 — защита внутренних органов (например, органов брюшной полости).

Функции гладких мышц:

1- обеспечивают функцию полых органов, стенки которых они образуют. В частности, благодаря гладким мышцам осуществляется изгнание содержимого из мочевого пузыря, кишки, желудка, желчного пузыря, матки.

2- обеспечивают сфинктерную функцию — создают условия для хранения содержимого полого органа в этом органе, например, мочу в мочевом пузыре, плод в матке.

3- важнейшая роль в системе кровообращения и лимфообращения — изменяя просвет сосудов, гладкие мышцы тем самым адаптируют регионарный кровоток к местным потребностям в кислороде, питательных веществах.

4- могут существенно влиять на функцию связочного аппарата, т.к содержатся во многих связках и при своем сокращении меняют состояние данной связочной структуры. Например, ГМК (гладкомышечные клетки) содержатся в широкой связке матки.

Функция сердечной мышцы— насосная, обеспечение движения крови по сосудам.

3. Функциональная организация скелетных мышц

Скелетные мышцы человека содержат до 300 млн мышечных волокон. Основным морфо — функциональным элементом нервно-мышечного аппарата является двигательная единица (ДЕ). ДЕ — это мотонейрон с иннервируемыми им мышечными волокнами. Аксон мотонейрона из спинного мозга проходит в составе периферических нервов до мышцы, внутри которой разветвляется на множество концевых веточек. Каждая концевая веточка заканчивается на одном мышечном волокне, образуя нервно-мышечный синапс. Импульсы, идущие по аксону мотонейрона, активируют все иннервируемые им мышечные волокна. Поэтому ДЕ функционирует как единое морфофункциональное образование.

Читайте также:  Как_стать_шире_в_спине

У человека в разных мышцах и даже в пределах одной мышцы ДЕ могут значительно отличаться друг от друга по строению и функции. Морфологически ДЕ отличаются друг от друга размерами: объемом тела мотонейрона, толщиной его аксона и числом мышечных волокон. Функционально ДЕ разделяются на два основных типа: медленные (I тип) и быстрые (II тип).

Двигательные единицы (ДЕ) небольших мышц содержат ма­лое число мышечных волокон (ДЕ мышц глазного яблока содержит 3-6 воло­кон, мышц пальцев руки — 10-25 волокон), а ДЕ крупных мышц туло­вища и конечностей — до нескольких тысяч (например, ДЕ икро­ножной мышцы человека — около 2000 мышечных волокон).

Мелкие мышцы иннервируются из одного сегмента спинного мозга, а крупные мышцы—мотонейронами 2-3 спинальных сегментов. Мотонейроны, иннервирующие одну мышцу, составляют общий мо­тонейронный пул, в котором могут находиться мотонейроны различных размеров.

Большие ДЕ образованы крупными мото­нейронами, которые имеют толстые аксоны, множество концевых разветвлений и большое число связанных с ними мышечных воло­кон. Такие ДЕ имеют низкую возбудимость, генерируют высокую частоту нервных импульсов (порядка 20-50 импульсов в 1с) и харак­теризуются высокой скоростью проведения возбуждения. Они включаются в работу лишь при высоких нагрузках на мышцу. Мелкие ДЕ имеют мотонейроны небольших размеров, тонкие и мед­ленно проводящие аксоны, малое число мышечных волокон. Они легко возбуждаются и включаются в работу при незначительных мы­шечных усилиях. Нарастание нагрузки вызывает активацию различ­ных ДЕ скелетной мышцы в соответствии с их размерами — от мень­ших к большим (правило Хеннемана).

Мышечное волокно представляет собой вытянутую цилиндрическую клетку (ее диаметр от 10 до 100 мкм, а длина может достигать 35 см). В состав волокна входят его оболочка — сарколемма, жидкое содержимое — саркоплазма, ядро, энергетические центры —митохондрии, белковые депо — рибосомы, сократительные элементы — миофибриллы, а также замк­нутая система продольных трубочек и цистерн, расположенных вдоль миофибрилл и содержащих ионы Са ,— саркоплазматический ретикулум. Поверхностная мембрана клетки через равные проме­жутки образует поперечные трубочки, входящие внутрь мышечного волокна, по которым внутрь клетки проникает потенциал действия при ее возбуждении.

Миофибриллы — это тонкие волокна (диаметр их 1-2 мкм, длина 2-2.5 мкм), содержащие 2 вида сократительных белков (прото-фибрилл): тонкие нити актина и вдвое более толстые нити миозина. Они расположены таким образом, что вокруг миозиновых нитей на­ходится 6 актиновых нитей, в вокруг каждой актиновой — 3 миози­новых. Миофибриллы разделены Z-мембранами на отдельные участ­ки— саркомеры, в средней части которых расположены пре­имущественно миозиновые нити, а актиновые нити прикреплены к Z-мембранам по бокам саркомера. Разная способность актина и ми­озина преломлять свет создает в состоянии покоя мышцы ее попереч­нополосатый вид в световом микроскопе.

Нити актина составляют около 20% сухого веса миофибрилл. Актин состоит из двух форм белка глобулярной формы (в виде сферических молекул) и палочковидных молекул тропомиозина, скрученных в виде двунитчатых спиралей, собранных в длинную цепь. На протяжении этой двойной актиновой нити каждый виток содержит по 14 молекул глобулярного актина (по 7 молекул с обеих сторон), наподо­бие нитки с бусинками, а также центры связывания ионов Са . В этих центрах содержится особый белок (тропонин), участвующий в образовании связи актина с миозином.

Миозин составлен из уложенных параллельно белковых ни­тей (эта часть представляет собой так называемый легкий меромиозин). На обоих концах его имеются отходящие в стороны шейки с утолщениями — головками (эта часть — тяжелый меромиозин), бла­годаря которым образуются поперечные мостики между миозином и актином.

8. Функции скелетных и гладких мышц.

ФУНКЦИИ И СВОЙСТВА ГЛАДКИХ МЫШЦ

Читайте также:  Lyka_labs_проверка_на_подлинность

1. ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ. Гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения — тонуса. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении — расслабляется.

2. АВТОМАТИЯ. ПД гладких мышечных клеток имеют авторитмический характер, подобно потенциалам проводящей системы сердца. Это свидетельствует о том, что любые клетки гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

3. РЕАКЦИЯ НА РАСТЯЖЕНИЕ. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге — тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления.

4. ПЛАСТИЧНОСТЬ. Изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня.

5. ХИМИЧЕСКАЯ ЧУВСТВИТЕЛЬНОСТЬ. Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

ФУНКЦИИ И СВОЙСТВА СКЕЛЕТНЫХ МЫШЦ

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

1)обеспечивают определенную позу тела человека;

2)перемещают тело в пространстве;

3) перемещают отдельные части тела относительно друг друга;

4) являются источником тепла, выполняя терморегуляционную функцию.

Скелетная мышца обладает следующими важнейшими СВОЙСТВАМИ:

1)ВОЗБУДИМОСТЬЮ — способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала.

2) ПРОВОДИМОСТЬЮ — способностью проводить потенциал действия вдоль и в глубь мышечного волокна по Т-системе;

3) СОКРАТИМОСТЬЮ — способностью укорачиваться или развивать напряжение при возбуждении;

4) ЭЛАСТИЧНОСТЬЮ — способностью развивать напряжение при растягивании.

Функции скелетных и гладких мышц

Мышечные волокна делят на 3 вида: скелетные, сердечные и гладкие.

Скелетные волокна подразделяются на фазные (они генерируют ПД) и тонические (не способны генерировать полноценный потенциал действия распространяющегося типа). Фазные волокна делятся на быстрые волокна (белые, гликолитические) и медленные волокна (красные, окислительные волокна).

Гладкие мышцы делятся на тонические и фазнотонические. Тонические волокна не способны развивать " быстрые" сокращения. В свою очередь фазнотонические мышцы можно условно разделить на обладающие автоматией — способные к спонтанной генерации фазных сокращений, и на мышцы, не обладающие свойством автоматии.

Основным морфо — функциональным элементом нервно-мышечного аппарата является двигательная единица (ДЕ). ДЕ — это мотонейрон с иннервируемыми им мышечными волокнами. Аксон мотонейрона из спинного мозга проходит в составе периферических нервов до мышцы, внутри которой разветвляется на множество концевых веточек. Каждая концевая веточка заканчивается на одном мышечном волокне, образуя нервно-мышечный синапс. Импульсы, идущие по аксону мотонейрона, активируют все иннервируемые им мышечные волокна. Поэтому ДЕ функционирует как единое морфофункциональное образование.

Читайте также:  Чем_убрать_шелушение_на_лице

Функции скелетных и гладких мышц

Скелетные мышцы составляют 40% от массы тела и выполняют ряд важных функций:

1 — передвижение тела в пространстве, 2 — перемещение частей тела относительно друг друга, 3 — поддержание позы, 4 — передвижение крови и лимфы, 5 — выработка тепла, 6 — участие в акте вдоха и выдоха, 7 — двигательная активность как важнейший антиэнтропийный и антистрессовый фактор (тезисы " движение — это жизнь" или " кто много двигается, тот много живет" — имеют реальную материальную основу), 8 — депонирование воды и солен, 9 — защита внутренних органов (например, органов брюшной полости).

Строение скелетных мышц

Гладкие мышцы обеспечивают функцию полых органов, стенки которых они образуют. В частности, благодаря гладким мышцам осуществляется изгнание содержимого из мочевого пузыря, кишки, желудка, желчного пузыря, матки. Гладкие мышцы обеспечивают сфинктерную функцию — создают условия для хранения содержимого полого органа в этом органе, например, мочу в мочевом пузыре, плод в матке. Важнейшую роль выполняют гладкие мышцы в системе кровообращения и лимфообращения — изменяя просвет сосудов, гладкие мышцы тем самым адаптируют регионарный кровоток к местным потребностям в кислороде, питательных веществах. Гладкие мышцы могут существенно влиять на функцию связочного аппарата, т.к содержатся во многих связках и при своем сокращении меняют состояние данной связочной структуры. Например, ГМК (гладкомышечные клетки) содержатся в широкой связке матки.

Функциональные особенности гладких мышц

Гладкие мышцы находятся в стенках внутренних органов и кровеносных сосудов. Регуляция их тонуса и сократительной активности осуществляется эфферентными волокнами симпатической и парасимпатической нервной системы, а также местными гуморальными и физическими воздействиями.

Сократительный аппарат гладких мышц, как и скелетных, состоит из толстых миозиновых и тонких актиновых нитей. Вследствие их нерегулярного распределения клетки гладких мышц не имеют характерной для скелетной и сердечной мышцы поперечной исчерченности. Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм и толщину 2-10 мкм. Они отделены друг от друга узкими щелями (60-150 нм). Возбуждение электротонически распространяется по мышце от клетки к клетке через особые плотные контакты ( нексусы) между плазматическими мембранами соседних клеток.

Волокна гладких мышц сокращаются в результате относительного скольжения миозиновых и актиновых нитей, но скорость их сокращения и скорость расщепления АТФ в 100-1000 раз меньше, чем в скелетных мышцах. Поэтому гладкие мышцы хорошо приспособлены к длительному тоническому сокращению без развития утомления.

Гладкие мышцы, обладающие спонтанной активностью, способны сокращаться и при отсутствии прямых возбуждающих нервных и гуморальных воздействий (например, ритмические сокращения гладких мышц кишечника).

Спонтанная активность гладкомышечных клеток связана и с их растяжением, вызывающим деполяризацию мембраны мышечного волокна, возникновение серии распространяющихся потенциалов действия, с последующим сокращением клетки.

Гладкие мышцы, не обладающие спонтанной активностью сокращаются под влиянием импульсов вегетативной нервной системы. Так, в отличие от мышц кишечника, мышечные клетки артерий, семенных протоков и радужки обладают слабой спонтанной активностью, или вообще не проявляют ее. Отдельные нервные импульсы не способны вызвать пороговую деполяризацию таких клеток и их сокращение. Потенциал действия волокна с последующим сокращением возникает лишь при поступлении к нему серии импульсов с частотой 1 имп/с и выше. В гладких мышцах, не обладающих спонтанной активностью возбуждение также передается от одной клетки к последующим через плотные контакты их мембран (нексусы).

Подобно скелетной и сердечной мышцам гладкие мышцы расслабляются, если концентрация ионов кальция снижается ниже 10 -8 моль/л. Однако в связи со слаборазвитым саркоплазматическим ретикулумом и медленным переносом ионов кальция через мембрану клетки, расслабление происходит гораздо медленнее, чем в случае поперечно-полосатых волокон скелетных мышц.

Ссылка на основную публикацию
Фото_худых_рук
длинные худые руки -что деать? у меня от природы длинные худые руки, в бедрах я шире чем в торсе, хотя...
Фото_голых_девочек_тинейджеров
Рубрика «Ню (18+)» СТЕНА Комментарии пользователей да. девочка созрела, это она поняла теперь. однако как неожиданно. Не для тебя неожиданно,...
Фото_голых_женщин_с_детьми
Голая женщина бегала по улицам Красноярска с младенцем на руках На улице Молокова в Красноярске заметили женщину с младенцем, которая...
Фото_целлюлита_на_попе
Как избавиться от целлюлита Целлюлит — это страшный сон миллионов представительниц прекрасного пола, но, если вдуматься, это не самая серьёзная,...
Adblock detector