Ядро_синтез_белка

Ядро_синтез_белка

Биосинтез белка

Биосинтез белка — это многостадийный процесс синтеза и созревания белков, протекающий в живых организмах. В биосинтезе белка выделяют два основных этапа: синтез полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК (трансляция), и посттрансляционные модификации полипептидной цепи. Процесс биосинтеза белка требует значительных затрат энергии.

Содержание

История изучения биосинтеза белка [ править | править код ]

В 1940-х годах белки рассматривались как ключевые вещества живых организмов, которые не только выполняют биохимические функции, но и участвуют наследственной передаче информации. Однако механизм синтеза белка в оставался тогда ещё чёрным ящиком. Одним из предполагаемых механизмов объяснялся концепцией обратного протеолиза, которая поддерживалась выдающимися биохимиками того времени Максом Бергманном и Джозефом Фрутоном. В 1940 году Торбьерн Касперссон и Джек Шульц разработали методы измерения поглощения нуклеиновых кислот в клетках под воздействием ультрафиолетового излучения, а также микроскопию клеток под воздействием ультрафиолета. Благодаря этой разработке они смогли определить, что образование белков связано с повышенным присутствием рибонуклеиновых кислот в определённых ядерных и цитоплазматических участках. Примерно в то же время Жан Браше и Раймонд Джинер и Хьюберт Шантренн пришли к аналогичным выводам на основе дифференциального окрашивания и расщепления тканей РНКазой in situ [1] .

Между 1945 и 1950 годами был разработан метод меченых атомов ( 35 S, 32 P, 14 C и 3 H). Радиоактивные аминокислоты для тестирования животных и после включения метки в белки различных тканей. Первоначально использовали разные аминокислоты: цистеин и метионин, меченные серой, глицин, меченный углеродом, и лизин, меченный углеродом [1] .

Последовательность процессов синтеза полипептидной цепи белковой молекулы [ править | править код ]

  1. Активация аминокислоты специфичным ферментом в присутствии АТФ с образованием аминоациладенилата
  2. Присоединение активированной аминокислоты к специфичной тРНК с высвобождением аденозинмонофосфата (АМФ)
  3. Связывание аминоацил-тРНК (тРНК, нагруженной аминокислотой) с рибосомами, включение аминокислоты в белок с высвобождением тРНК [2]

Энергетика биосинтеза белка [ править | править код ]

Образование белка в живых клетках тесно связано с внешними условиями и внутриклеточными потребностями. Центральной проблемой в клеточной физиологии является определение стоимости производства белка и молекулярных процессов, ограничивающих биосинтез. Это особенно важно для понимания взаимосвязей между ростом клеток, делением клеток и размером клеток. Наиболее энергозатратным процесом при синтезе белка обычно считается трансляция. Большая часть клеточного пула гуанозинтрифосфата используется для полимеризации аминокислот, тогда как значительно меньшие количество энергии используется на другие процессы, включая транскрипцию и сворачивание белков [3] .

Синтез белков в клетке — описание, функции процесса

Белки играют очень важную роль в жизнедеятельности организмов, выполняют защитные, структурные, гормональные, энергетические функции. Обеспечивают рост мышечной и костной ткани. Белки информируют о строении клетки, о её функциях и биохимических свойствах, входят в состав ценных, полезных организму продуктов питания (яиц, молочных продуктов, рыбы, орехов, бобовых, ржи и пшеницы). Усвояемость такой пищи объясняется биологической ценностью. При равном показателе количества белка легче будет усваиваться тот продукт, чья ценность выше. Дефектные полимеры должны удаляться из организма и заменяться новыми. Этот процесс протекает при синтезе белков в клетках.

Какими бывают белки

Вещества, состоящие только из остатков аминокислот, называются простыми белками (протеинами). В случае необходимости используется их энергетическое свойство, поэтому людям, ведущим здоровый образ жизни, зачастую дополнительно нужен прием протеина. Сложные же белки, протеиды, имеют в своем составе простой белок и небелковую часть. Десять аминокислот в белке являются незаменимыми, это означает, что организм не может синтезировать их самостоятельно, они поступают из пищи, другой же десяток – заменимый, то есть их можно создать из других аминокислот. Так начинается жизненно необходимый для всех организмов процесс.

Читайте также:  Средний_рост_12_летнего_мальчика

Основные этапы биосинтеза: откуда берутся белки

Новые молекулы берутся в результате биосинтеза – химической реакции соединения. Существует два основных этапа синтеза белков в клетке. Это транскрипция и трансляция. Транскрипция происходит в ядре. Это считывание с ДНК (дезоксирибонуклеиновой кислоты), которая несет информацию о будущем белке, на РНК (рибонуклеиновую кислоту), которая переносит эту информацию с ДНК в цитоплазму. Происходит это по причине того, что ДНК непосредственно в биосинтезе участия не принимает, она только несет сведения, не имея способности выходить в цитоплазму, где синтезируется белок, и выполняя только функцию носителя генетической информации. Транскрипция же позволяет считать данные с матрицы ДНК на РНК по принципу комплементарности.

Роль РНК и ДНК в процессе

Итак, запускает синтез белков в клетках цепочка ДНК, которая несет информацию о каком-либо конкретном белке и называется геном. Цепочка ДНК в процессе транскрипции расплетается, то есть её спираль начинает распадаться в линейную молекулу. С ДНК информация должна преобразоваться на РНК. Напротив тимина в данном процессе должен становиться аденин. Цитозин же имеет в качестве пары гуанин, точно так же, как ДНК. Напротив аденина РНК становится урацил, потому как в РНК такого нуклеотида, как тимин, не существует, он заменяется просто урациловым нуклеотидом. С гуанином соседствует цитозин. Напротив аденина становится урацил, а в паре с тимином располагается аденин. Эти молекулы РНК, которые становятся напротив, называются информационными РНК (иРНК). Они способны через поры выходить из ядра в цитоплазму и рибосомы, которые, собственно, и выполняют функцию синтеза белков в клетках.

О сложном простыми словами

Теперь же совершается сборка из аминокислотных последовательностей полипептидной цепочки белка. Транскрипцией можно назвать считывание информации о будущем белке с матрицы ДНК на РНК. Это можно определить как первый этап. После того как РНК выходит из ядра, она должна попасть к рибосомам, где происходит второй этап, который называется трансляцией.

Трансляция — это уже переход РНК, то есть перенос информации с нуклеотидов на молекулу белка, когда РНК говорит о том, какая последовательность аминокислот должна быть в веществе. В таком порядке информационная РНК попадает в цитоплазму к рибосомам, которые осуществляют синтез белков в клетке: А (аденин) — Г (гуанин) — У (урацил) — Ц (цитозин) — У (урацил) — А (аденин).

Зачем нужны рибосомы

Для того чтобы произошла трансляция и в результате образовался белок, нужны такие компоненты, как сама информационная РНК, транспортная РНК, а также рибосомы в качестве «фабрики», на которой производится белок. В данном случае функционируют две разновидности РНК: информационная, которая образовалась в ядре с ДНК, и транспортная. Молекула второй кислоты имеет вид клевера. Этот «клевер» присоединяет к себе аминокислоту и несет её к рибосомам. То есть он выполняет транспортировку органических соединений непосредственно к «фабрике» по их образованию.

Как работает рРНК

Также существуют рибосомальные РНК, которые входят в состав самой рибосомы и выполняют синтез белка в клетке. Получается, что рибосомы являются немембранными структурами, они не имеют оболочек, как, например, ядро или эндоплазматическая сеть, а состоят просто из белков и рибосомальных РНК. Что же происходит, когда последовательность из нуклеотидов, то есть информационная РНК, попадает к рибосомам?

Читайте также:  В_чем_присутствуют_углеводы

Транспортная РНК, которая находится в цитоплазме, подтягивает к себе аминокислоты. Откуда же взялись аминокислоты в клетке? А образуются они вследствие расщепления белков, которые поступают внутрь с пищей. Эти соединения переносятся током крови к клеткам, где происходит продуцирование необходимых для организма белков.

Конечный этап синтеза белков в клетках

Аминокислоты плавают в цитоплазме так же, как и транспортные РНК, и когда происходит непосредственно сборка полипептидной цепи, эти транспортные РНК начинают с ними соединяться. Однако не во всякой последовательности и далеко не любая транспортная РНК может соединиться со всеми видами аминокислот. Существует определенный участок, к которому присоединяется необходимая аминокислота. Второй же участок транспортной РНК называется антикодоном. Этот элемент состоит из трех нуклеотидов, которые комплементарны последовательности нуклеотидов в информационной РНК. Для одной аминокислоты необходимо три нуклеотида. Например, какой-либо условный белок состоит для упрощения из всего лишь двух аминокислот. Очевидно, что в основном белки имеют очень длинную структуру, состоят из многих аминокислот. Цепь А — Г — У называется триплетом, или кодоном, к нему будет присоединяться транспортная РНК в виде клевера, на конце которого будет находиться определенная аминокислота. К следующему триплету Ц — У — А будет присоединяться еще одна тРНК, которая будет содержать совершенно другую аминокислоту, комплементарную данной последовательности. В таком порядке будет происходить дальнейшая сборка полипептидной цепочки.

Биологическое значение синтеза

Между двумя аминокислотами, находящимися на концах «клеверов» каждого триплета, образуется пептидная связь. На этом этапе транспортная РНК уходит в цитоплазму. К триплетам присоединяется затем следующая транспортная РНК с другой аминокислотой, которая образует с предыдущими двумя полипептидную цепь. Этот процесс повторяется до момента, когда набирается необходимая последовательность аминокислот. Таким образом происходит синтез белка в клетке, и образуются ферменты, гормоны, кровяные вещества и т. д. Не во всякой клетке образуется любой белок. Каждая клетка может образовать определенный белок. Например, в эритроцитах будет образовываться гемоглобин, а клетками поджелудочной железы будут синтезироваться гормоны и разнообразные ферменты, расщепляющие пищу, которая попадает в организм.

В мышцах же будет образовываться белок актин и миозин. Как видно, процесс синтеза белка в клетках многоэтапен и сложен, что говорит о его значимости и необходимости для всего живого.

Биосинтез белка — понятие, последовательность процессов и основные этапы

Биосинтез белка – важная часть пластического обмена всех клеток. Рассматривает данный процесс наука биология. В результате образуются специфичные вещества, характерные для данного организма. Происходит воспроизведение наследственной информации.

Последовательность процессов биосинтеза белка

Образование белка является многоступенчатым процессом.

Чтобы запустить реакции образования вещества, осуществляется целый ряд последовательных событий:

Транскрипция — это реакции переписывания наследственной информации с макромолекулы ДНК на матричную РНК. Ее называют также информационной. Краткое обозначение: м-РНК, и-РНК. Процесс протекает в ядре клетки.

Перемещение и-РНК к месту синтеза белка.

Трансляция — это перенос информации о чередовании нуклеотидов м-РНК на макромолекулу белка. Процесс идёт вне ядра.

Где происходит синтез белка

Образование высокомолекулярного соединения протекает в цитоплазме. Именно здесь находятся органоиды, на которых осуществляется данный процесс. Рибосома представляет собой две части: малую и большую. Чтобы биосинтез белка начался, необходимо доставить информацию из ядра в цитоплазму.

Читайте также:  Зависимость_от_видеоигр

Ядро эукариот хранит информацию о первичной структуре природных полимеров. Её называют наследственной. Эта важная информация должна быть без искажения перенесена к месту синтеза белка.

С этой целью в ядре идут матричные реакции. На одной из цепей ДНК синтезируется и-РНК. Именно она является посредником между двумя частями клетки.

Этапы биосинтеза белка

Транскрипция

Процесс протекает в ядре. ДНК образована большим количеством нуклеотидов. Это единица макромолекулы. Она включает в свой состав 3 компонента:

углевод, представленный пентозой – дезоксирибозой;

минеральную кислоту – фосфорную;

органическое соединение, относящееся к классу азотистых оснований.

В составе ДНК могут содержаться 4 разных основания. Они имеют краткое обозначение, по первой букве названия:

Именно этими основаниями и отличаются нуклеотиды. Чередование 3 нуклеотидов образует триплет. Один триплет соответствует одной аминокислоте. Вопрос соответствия аминокислот триплетам изучен и указан в таблице генетического кода.

Последовательность триплетов в молекуле дезоксирибонуклеиновой кислоты, отвечающей за синтез одного белка, называют геном. Между разными генами расположены триплеты, которые не соответствуют аминокислотам. Их называют стоп-кодонами. Они служат сигналом начала и окончания гена.

Для осуществления транскрипции, участок макромолекулы ДНК раскручивается. Он выполняет роль матрицы. На нём выстраивается и-РНК. Осуществляется синтез по принципу соответствия. Еще его называют комплементарностью.

РНК также имеет нуклеотидное строение. Вместо дезоксирибозы присутствует углевод рибоза. Содержится остаток ортофосфорной кислоты. Третьим компонентом является азотистое основание. Три основания одинаковые – А, Г, Ц в ДНК и РНК. Четвертое основание рибонуклеиновой кислоты – урацил (У).

Комплементарными основаниями являются: Т – А, А – У, Г – Ц, Ц – Г. В парах комплементарных оснований первое соответствует ДНК, второе – РНК. Таким образом, на макромолекуле ДНК по принципу соответствия выстраивается и-РНК. В дальнейшем цепь РНК транспортируется через ядерную мембрану к месту синтеза белка.

Трансляция

Процесс идет на органоидах – рибосомах. Они нанизываются на цепь и-РНК, передвигаются по ней не плавно, а прерывисто. Располагаются таким образом, что внутри рибосомы находится полностью 1-2 триплета. На одну РНК может одновременно нанизываться большое количество рибосом.

В процессе принимают участие т-РНК. Они имеют пространственную структуру, принимают форму трилистника. Верхняя часть листа, то есть молекулы, содержит антикодон. Это триплет, распознающий кодон (один триплет) и-РНК.

Каждая т-РНК транспортирует к рибосоме строго определенную аминокислоту. Если триплет-антикодон т-РНК распознает триплет-кодон и-РНК, тогда аминокислота встраивается в макромолекулу белка. Следующая т-РНК подтаскивает другую аминокислоту, снова идет процесс распознавания. В данном случае также идет матричный процесс сборки белка. РНК служит матрицей для синтеза белка.

Как только белковая молекула синтезирована, она освобождается от рибосомы. Правильное чередование аминокислот в макромолекуле образует первичную структуру белковой молекулы. Она является определяющей, поэтому так важен матричный синтез белков. Другие структуры белковые макромолекулы приобретают самопроизвольно.

Схема биосинтеза белка

Процессы, ведущие к синтезу белка, можно кратко изобразить на схеме:

Первый этап – реакции, идущие в кариоплазме. Раскручивание ДНК. Транскрипция. Образование м-РНК.

Второй этап – транспорт м-РНК к рибосомам.

Третий этап – реакции, идущие в цитоплазме. Трансляция. Биосинтез белковой молекулы, протекающий при участии РНК, клеточных органоидов – рибосом.

Заключение

В реакциях матричного синтеза происходит реализация наследственной информации. В каждом организме синтезируются специфичные белковые молекулы. Они вместе с углеводами и жирами накапливаются в плодах растений. В организмах животных выполняют множество разнообразных функций.

Ссылка на основную публикацию
Adblock detector