Уравнение_аэробного_гликолиза

Уравнение_аэробного_гликолиза

Аэробный гликолиз.

В клетках глюкоза может превращаться в жирные кислоты, аминокислоты, гликоген и окисляться в различных катаболических путях.

Окисление глюкозы называют гликолизом. Глюкоза может окисляться до лактата и до пирувата. В аэробных условиях главным продуктом является пируват, такой путь называется аэробным гликолизом. При недостатке кислорода преобладает продукт — лактат. Этот путь окисления называется анаэробным гликолизом.

Процесс аэробного распада глюкозы можно разделить на три части: специфические для глюкоза превращения, завершающиеся образованием пирувата (аэробный гликолиз); общий путь катаболизма (окислительное декарбоксилирование и ЦЛК); дыхательная цепь.

В результате этих процессов глюкоза распадается до CO2 и H2O, а освобождающаяся энергия используется для синтеза АТФ.

Ферментативные реакции.

Распад глюкозы до пирувата также можно разделить на два этапа. Первый этап (глюкоза  глицеральдегидфосфат) требует энергии в форме АТФ (2 АТФ).

Е1гексокиназа или глюкокиназа

Второй этап (глицеральдегид  пируват) протекает с выходом энергии в виде АТФ и НАДН (4 АТФ и 2 НАДН).

Особенности ферментов гликолиза.

На пути гликолиза три реакции являются необратимыми (реакция 1 —глюкокиназная, реакция 3 — фофофруктокиназная, реакция 10 —пируваткиназная). Они катализируются регуляторными ферментами и определяют скорость всего процесса гликолиза. Кроме того, именно эти реакции отличаются от реакций обратного пути — синтеза глюкозы (глюконеогенеза).

Гексокиназа и глюкокиназа

Глюкокиназная реакция — первая АТФ-зависимая реакция гликолиза. Она катализируется тканеспецифическими ферментами — гексокиназами.У человека известно 4 изомера гексокиназ (типы I — IV). Изофермент IV типа — глюкокиназа. Глюкокиназа находится только в печени и имеет высокое значение Км к глюкозе. Это приводит к тому, что фермент насыщается субстратом лишь при очень высоких концентрациях глюкозы. Гексокиназа катализирует фосфорилирование глюкозы при любых (в том числе низких) концентрациях глюкозы и ингибируется продуктом глюкозо-6-фосфатом. Глюкокиназа не ингибируется глюкозо-6-фосфатом. При увеличении концентрации глюкозы после приема пищи увеличивается скорость глюкокиназной реакции. Глюкозо-6-фосфат не проходит через клеточные мембраны и задерживается в клетке, поэтому больше глюкозы задерживается в печени. Таким образом, глюкокиназа является буфером глюкозы в крови. В тоже время, в тканях, энергетический обмен которых зависит от глюкозы, локализован изофермент с низким значением Км.

Фермент имеет почти равное значение Км для глюкозо-6-фосфата и фруктозо-6-фосфата. Этот фермент по-другому называют гексозофосфатизомераза. Катализирует реакции гликолиза и глюконеогенеза.

Этот фермент катализирует только прямую реакцию, т.е. эта реакция гликолиза является необратимой и определяет скорость всего процесса.

Фруктозодифосфатальдолаза катализирует реакции гликолиза и глюконеогенеза.

Триофосфатизомераза катализирует равновесную реакцию, и равновесие смещается в сторону гликолиза или глюконеогенеза по принципу действия масс.

Глицеральдегид-3-фосфатдегидрогеназа катализирует реакции гликолиза и глюконеогенеза.

Фосфоглицераткиназа катализирует обратимую реакцию (гликолиза и глюконеогенеза). Эта реакция имеет большое значение в эритроцитах, т.к. образующийся 1,3-дифосфоглицерат под действием фермента дифосфоглицератмутазы превращается в 2,3-дифосфоглицерат (ДФГ) — регулятор сродства Hb к кислороду.

Фосфоглицератфосфомутаза и енолгидратаза катализируют превращение относительно низкоэнергетической связи в 3-фосфоглицерате в высокоэнергетическую форму, а затем в АТФ.

Пируваткиназа — регуляторный фермент, который катализирует необратимую реакцию, в которой высокоэнергетический фосфат фосфоенолпирувата превращается в АТФ.

Пируват далее окисляется в митохондриях. Распад глюкозы до пирувата протекает в цитоплазме, поэтому существует специальный переносчик пирувата в митохондрии по механизму симпорта с Н + . Образующийся НАДН также должен быть транспортирован в митоходрии для окисления в цепи переноса электронов.

ГЛИКОЛИЗ

Гликолиз (от греч. glycys – сладкий и lysis – растворение, распад) – это последовательность ферментативных реакций, приводящих к превращению глюкозы в пируват с одновременным образованием АТФ.

При аэробных условиях пируват проникает в митохондрии, где полностью окисляется до СО2 и Н2О. Если содержание кислорода недостаточно, как это может иметь место в активно сокращающейся мышце, пируват превращается в лактат.

Итак, гликолиз – не только главный путь утилизации глюкозы в клетках, но и уникальный путь, поскольку он может использовать кислород, если

последний доступен (аэробные условия), но может протекать и в отсутствие кислорода (анаэробные условия).

Анаэробный гликолиз – сложный ферментативный процесс распада глюкозы, протекающий в тканях человека и животных без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. В процессе гликолиза образуется АТФ. Суммарное уравнение гликолиза можно представить следующим образом:

Читайте также:  Гто_знаки_отличия_2018_год

В анаэробных условиях гликолиз – единственный процесс в животном организме, поставляющий энергию. Именно благодаря гликолизу организм человека и животных определенный период может осуществлять ряд физиологических функций в условиях недостаточности кислорода. В тех случаях, когда гликолиз протекает в присутствии кислорода, говорят об аэробном гликолизе .

Последовательность реакций анаэробного гликолиза, так же как и их промежуточные продукты, хорошо изучена. Процесс гликолиза катализируется одиннадцатью ферментами, большинство из которых выделено в гомогенном, клисталлическом или высокоочищенном виде и свойства которых достаточно известны. Заметим, что гликолиз протекает в гиало-плазме (цитозоле) клетки.

Первой ферментативной реакцией гликолиза является фосфорилирование, т.е. перенос остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом гексокиназой:

Образование глюкозо-6-фосфата в гексокиназной реакции сопровождается освобождением значительного количества свободной энергии системы и может считаться практически необратимым процессом.

Наиболее важным свойством гексокиназы является ее ингибирование глюкозо-6-фосфатом, т.е. последний служит одновременно и продуктом реакции, и аллостерическим ингибитором.

Фермент гексокиназа способен катализировать фосфорилирование не только D-глюкозы, но и других гексоз, в частности D-фруктозы, D-маннозы и т.д. В печени, кроме гексокиназы, существует фермент глюкокиназа, который катализирует фосфорилирование только D-глюкозы. В мышечной ткани этот фермент отсутствует (подробнее см. главу 16).

Второй реакцией гликолиза является превращение глюкозо-6-фос-фата под действием фермента глюкозо-6-фосфатизомеразы во фруктозо-6-фосфат:

Эта реакция протекает легко в обоих направлениях, и для нее не требуется каких-либо кофакторов.

Третья реакция катализируется ферментом фосфофруктокиназой; образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ:

Данная реакция аналогично гексокиназной практически необратима, протекает в присутствии ионов магния и является наиболее медленно текущей реакцией гликолиза. Фактически эта реакция определяет скорость гликолиза в целом.

Фосфофруктокиназа относится к числу аллостерических ферментов. Она ингибируется АТФ и стимулируется АМФ . При значительных величинах отношения АТФ/АМФ активность фосфофруктокиназы угнетается и гликолиз замедляется. Напротив, при снижении этого коэффициента интенсивность гликолиза повышается. Так, в неработающей мышце активность фосфофруктокиназы низкая, а концентрация АТФ относительно высокая. Во время работы мышцы происходит интенсивное потребление АТФ и активность фосфофруктокиназы повышается, что приводит к усилению процесса гликолиза.

Четвертую реакцию гликолиза катализирует фермент альдолаза. Под влиянием этого фермента фруктозо-1,6-бисфосфат расщепляется на две фосфотриозы:

Эта реакция обратима. В зависимости от температуры равновесие устанавливается на различном уровне. При повышении температуры реакция сдвигается в сторону большего образования триозофосфатов (дигидро-ксиацетонфосфата и глицеральдегид-3-фосфата).

Пятая реакция – это реакция изомеризации триозофосфатов. Катализируется ферментом триозофосфатизомеразой:

Равновесие данной изомеразной реакции сдвинуто в сторону дигид-роксиацетонфосфата: 95% дигидроксиацетонфосфата и около 5% глице-ральдегид-3-фосфата. В последующие реакции гликолиза может непосредственно включаться только один из двух образующихся триозофосфатов, а именно глицеральдегид-3-фосфат. Вследствие этого по мере потребления в ходе дальнейших превращений альдегидной формы фосфотриозы ди-гидроксиацетонфосфат превращается в глицеральдегид-3-фосфат.

Образованием глицеральдегид-3-фосфата как бы завершается первая стадия гликолиза. Вторая стадия – наиболее сложная и важная. Она включает окислительно-восстановительную реакцию (реакция гликолитической оксидоредукции), сопряженную с субстратным фосфорилированием, в процессе которого образуется АТФ.

В результате шестой реакции глицеральдегид-3-фосфат в присутствии фермента глицеральдегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата подвергается своеобразному окислению с образованием 1,3-бисфосфоглицериновой кислоты и восстановленной формы НАД (НАДН). Эта реакция блокируется йод- или бромацетатом, протекает в несколько этапов:

1,3-Бисфосфоглицерат представляет собой высокоэнергетическое соединение (макроэргическая связь условно обозначена знаком «тильда»

). Механизм действия глицеральдегидфосфатдегидрогеназы сводится к следующему: в присутствии неорганического фосфата НАД + выступает как акцептор водорода, отщепляющегося от глицеральдегид-3-фосфата. В процессе образования НАДН глицеральдегид-3-фосфат связывается с молекулой фермента за счет SH-групп последнего. Образовавшаяся связь богата энергией, но она непрочная и расщепляется под влиянием неорганического фосфата, при этом образуется 1,3-бисфосфоглицериновая кислота.

Седьмая реакция катализируется фосфоглицераткиназой, при этом происходит передача богатого энергией фосфатного остатка (фосфатной группы в положении 1) на АДФ с образованием АТФ и 3-фосфогли-цериновой кислоты (3-фосфоглицерат):

Таким образом, благодаря действию двух ферментов (глицеральде-гидфосфатдегидрогеназы и фосфоглицераткиназы) энергия, высвобождающаяся при окислении альдегидной группы глицеральдегид-3-фосфата до карбоксильной группы, запасается в форме энергии АТФ. В отличие от окислительного фосфорилирования образование АТФ из высокоэнергетических соединений называется субстратным фосфорилированием.

Читайте также:  Расчет_базовой_калорийности

Восьмая реакция сопровождается внутримолекулярным переносом оставшейся фосфатной группы, и 3-фосфоглицериновая кислота превращается в 2-фосфоглицериновую кислоту (2-фосфоглицерат).

Реакция легкообратима, протекает в присутствии ионов Mg 2+ . Кофактором фермента является также 2,3-бисфосфоглицериновая кислота аналогично тому, как в фосфоглюкомутазной реакции роль кофактора выполняет глюкозо-1,6-бисфосфат:

Девятая реакция катализируется ферментом енолазой, при этом 2-фосфоглицериновая кислота в результате отщепления молекулы воды переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват), а фосфатная связь в положении 2 становится высокоэргической:

Енолаза активируется двухвалентными катионами Mg 2+ или Мn 2+ и ингибируется фторидом.

Десятая реакция характеризуется разрывом высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ (субстратное фосфорилирование). Катализируется ферментом пируваткиназой:

Для действия пируваткиназы необходимы ионы Mg 2+ , а также одновалентные катионы щелочных металлов (К + или др.). Внутри клетки реакция является практически необратимой.

В результате одиннадцатой реакции происходит восстановление пировиноградной кислоты и образуется молочная кислота. Реакция протекает при участии фермента лактатдегидрогеназы и кофермента НАДН, образовавшегося в шестой реакции:

Последовательность протекающих при гликолизе реакций представлена на рис. 10.3.

Рис. 10.3. Последовательность реакций гликолиза.

1 — гексокиназа; 2 — фосфоглюкоизоме-раза; 3 — фосфофруктокиназа; 4 — альдо-лаза; 5 — триозофосфатизомераза; 6 — гли-церальдегидфосфатдегидрогеназа; 7 -фосфоглицераткиназа; 8 — фосфоглицеромутаза; 9 — енолаза; 10 — пируватки-наза; 11 — лактатдегидрогеназа.

Реакция восстановления пирувата завершает внутренний окислительно-восстановительный цикл гликолиза. НАД + при этом играет роль промежуточного переносчика водорода от глицеральдегид-3-фосфата (6-я реакция) на пировиноградную кислоту (11-я реакция), при этом сам он регенерируется и вновь может участвовать в циклическом процессе, получившем название гликолитический оксидоредукции.

Биологическое значение процесса гликолиза заключается прежде всего в образовании богатых энергией фосфорных соединений. На первых стадиях гликолиза затрачиваются 2 молекулы АТФ (гексокиназная и фосфофрук-токиназная реакции). На последующих образуются 4 молекулы АТФ (фосфоглицераткиназная и пируваткиназная реакции). Таким образом, энергетическая эффективность гликолиза в анаэробных условиях составляет 2 молекулы АТФ на одну молекулу глюкозы.

Как отмечалось, основной реакцией, лимитирующей скорость гликолиза, является фосфофруктокиназная. Вторая реакция, лимитирующая скорость и регулирующая гликолиз – гексокиназная реакция. Кроме того, контроль гликолиза осуществляется также ЛДГ и ее изоферментами.

В тканях с аэробным метаболизмом (ткани сердца, почек и др.) преобладают изоферменты ЛДГ1 и ЛДГ2 (см. главу 4). Эти изоферменты инги-бируются даже небольшими концентрациями пирувата, что препятствует образованию молочной кислоты и способствует более полному окислению пирувата (точнее, ацетил-КоА) в цикле трикарбоновых кислот.

В тканях человека, в значительной степени использующих энергию гликолиза (например, скелетные мышцы), главными изоферментами являются ЛДГ5 и ЛДГ4. Активность ЛДГ5 максимальна при тех концентрациях пирувата, которые ингибируют ЛДГ1. Преобладание изоферментов ЛДГ4 и ЛДГ5 обусловливает интенсивный анаэробный гликолиз с быстрым превращением пирувата в молочную кислоту.

Как отмечалось, процесс анаэробного распада гликогена получил название гликогенолиза. Вовлечение D-глюкозных единиц гликогена в процесс гликолиза происходит при участии 2 ферментов – фосфорилазы а и фосфо-глюкомутазы. Образовавшийся в результате фосфоглюкомутазной реакции глюкозо-6-фосфат может включаться в процесс гликолиза. После образования глюкозо-6-фосфата дальнейшие пути гликолиза и гликогенолиза полностью совпадают:

В процессе гликогенолиза в виде макроэргических соединений накапливаются не две, а три молекулы АТФ (АТФ не тратится на образование глюкозо-6-фосфата). Кажется, что энергетическая эффективность глико-генолиза выглядит несколько более высокой по сравнению с процессом гликолиза, но эта эффективность реализуется только при наличии активной фосфорилазы а. Следует иметь в виду, что в процессе активации фосфо-рилазы b расходуется АТФ (см. рис. 10.2).

Процесс гликолиза его реакции, аэробный и анаэробный (Таблица, схема)

Гликолиз — процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты, не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета. Суть гликолиза состоит в том, что молекула глюкозы (C6H12O6) без участия кислорода распадается на две молекулы пировиноградной кислоты (СН3СОСООН). При этом окисление идет за счет отщепления от молекулы глюкозы четырех атомов водорода, связывающихся со сложным органическим веществом НАД с получением двух молекул НАД•Н. Выделяющаяся при этом энергия запасается (40% от общего количества) в виде макроэргических связей двух молекул АТФ. 60% энергии выделяется в виде тепла. При последующем окислении НАД•Н получается еще 6 молекул АТФ. Таким образом, полный энергетический выход гликолиза в анаэробных условиях составляет 8 молекул АТФ.

Читайте также:  Расчет_калорий_по_рецепту

Аэробный процесс гликолиза (10 реакций), уравнение (с образованием пирувата):

Анаэробный процесс гликолиза (11 реакций), уравнение (с образованием лактата):

Схема процесса гликолиза и его реакции

На схеме в рамках обозначены исходные субстраты и конечные продукты гликолиза, цифрами в скобках — число молекул.

ATP (АТФ) — это аденозинтрифосфорная кислота, универсальный источник энергии

ADP (АДФ) — это аденозиндифосфат, нуклеотид, участвует в энергетическом обмене

NAD (НАД) — никотинамидадениндинуклеотидфосфата

NADH (НАД•Н) — востановленная форма NAD

Таблица процесс гликолиза его реакции

Для распада и частичного окисления молекулы глюкозы требуется протекание 11 сложных последовательных реакций.

Ферменты, Активаторы, ингибиторы

Подготовительная стадия гликолиза

Стадия активации глюкозы проходит в 5 реакций, в ходе которых 1 молекула гексозы (глюкозы) расщепляется на 2 молекулы триоз-глицеральдегидфосфата

1. Необратимая реакция фосфорилирования глюкозы

Процесс гликолиза начинается с фосфорилирования глюкозы за счет АТФ — первая реакция. Это первая пусковая реакция гликолиза. Ее результатом является глюкозо-6-фосфат, имеющий отрицательный заряд. В гликолизе может участвовать не только глюкоза, но и другие гексозы (фруктоза), но в результате фосфорилирования и активации все равно образуется глюкозо-6-фосфат.

Ингибиторы: глюкозо-6-Ф, фосфоенолпируват.

2. Обратимая реакция изомеризации глюкозо-6-фосфата

Во второй реакции происходит изомеризация (внутримолекулярные перестройки) глюкозо-6-фосфата во фруктозо-6-фосфат.

3. Необратимая реакция фосфорилирования фруктозо-6-фосфата (ключевая стадия гликолиза)

В третьей реакции происходит фосфорилирование (присоединение остатка ортофосфорной кислоты) фруктозо-6-фосфата с образованием фруктозо-1,6-дифосфата. При этом затрачивается еще одна молекула АТФ (уже вторая) — это вторая пусковая реакция гликолиза. Она идет в присутствии Mg2 + и является необратимой, так как сопровождается масштабным уменьшением свободной энергии.

Ингибиторы: АТФ, цитрат, НАДН.

4. Обратимая реакция дихотомического расщепления фруктозо-1,6-дифосфата

В четвертой реакции гликолиза происходит расщепление фруктозо-1,6-дифосфата на две молекулы глицеральдегид-3-фосфата.

5. Обратимая реакция изомеризации дигидроксиацетона-3-фосфат в глицеральдегид-3-фосфат

В пятой реакции происходит изомеризация полученных триозофосфатов. На этом заканчивается первая стадия гликолиза.

Стадия генерации АТФ

Проходит в 6 реакций (или 5), в ходе которых энергия окислительных реакций трансформируется в химическую энергию АТФ (субстратное фосфорилирование).

6. Окисление глицеральдегид-3-фосфата до 1,3-дифосфоглицерата (реакция гликолитической оксиредукции)

В шестой реакции происходит окисление альдегидной группы до карбоксильной. Выделившийся Н+ акцептируется NAD, который восстанавливается до NADH. Освобождающаяся энергия затрачивается для образования высокоэнергетической связи 1,3-бифосфоглицерата (1,3-бифосфоглицериновая кислота).

7. Субстратное фосфорилирование АДФ (7)

В седьмой реакции фосфорильная группа 1,3-бифосфоглицерата переносится на ADP, в результате чего образуется АТР (напоминаем, что следует иметь в виду две параллельные цепи реакций, с участием двух молекул триоз, образовавшихся из одной молекулы гексозы, следовательно, синтезируется не одна, а две молекулы АТР).

8. Реакция изомеризации 3-фосфоглицерата в 2-фосфоглицерат

В восьмой реакции гликолиза происходит перенос фосфатной группы с третьего атома углерода на второй. В результате образуется 2-фосфоглицерат (2-фосфоглицериновая кислота).

9. Реакция енолизации

Девятая реакция сопровождается внутримолекулярными окислительно-восстановительными процессами, в результате которых образуется фосфоенолпируват (фосфоенолпировиноградная кислота) с высокоэнергетической связью во втором атоме углерода и отщепляется молекула воды

10. Реакция субстратного фосфорилирования

В ходе десятой реакции фосфорильная группа переносится на ADP. При этом синтезируется АТР и пируват (пировиноградная кислота). Эта реакция также необратима, поскольку высокоэкзергонична.

11. Реакция обратимого восстановления пировиноградной кислоты до молочной кислоты (в анаэробных условиях)

Если после гликолиза следует аэробное расщепление, пируват мигрирует в матрикс митохондрий, где, взаимодействуя с коэнзимом-А, участвует в образовании ацетил-СоА. В анаэробных условиях пируват при участии NADH восстанавливается до лактата (молочной кислоты), который при этом является конечным продуктом гликолиза. Затем в аэробных условиях лактат может обратно превратиться в пируват и окислиться в митохондриях.

_______________

Источник информации:

1. Биология для поступающих в вузы / Г.Л. Билич, В.А. Крыжановский. — 2008.

2. Биология в таблицах и схемах / Спб. — 2004.

3. Биохимия в схемах и таблицах / И. В. Семак — Минск — 2011.

Ссылка на основную публикацию
Упражнения_с_ремнем_для_йоги
ВИДЕОУПРАЖНЕНИЯ: РЕМЕНЬ ДЛЯ ЙОГИ Ремень для йоги — это вспомогательное приспособление для занятий йогой. Чтобы сделать занятия с использованием ремня...
Упражнения_для_ягодиц_и_груди
Упражнения для ягодиц девушкам Упражнения для ягодиц девушкам Мечтаете одеть откровенный купальник и ловить заинтересованные взгляды мужчин? Вам надоели просторные...
Упражнения_для_ягодиц_парням
Как накачать ягодицы мужчине: топ упражнений для ягодиц Считается, что женщина оценивает мужчину по ширине плеч, объемным грудным мышцам и...
Упражнения_с_тяжелыми_гирями
Упражнения с гирями Гири – универсальный снаряд. С ними можно нарабатывать и выносливость, и силу, одновременно сжигая жир. Они очень...
Adblock detector